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Absence of the nematic phase in symmetric diblock copolymers
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We examine the possibility of nematic order in systems described by the Brazovskii model [Sov. Phys.
JETP 41, 85 (1975)] of the isotropic-lamellar phase transition, including symmetric diblock copolymer
melts and bilayer-forming surfactant systems. We introduce a nematic order parameter and look for
states that break rotational symmetry—that is, which have a well-defined direction for interfacial nor-
mals, but no phase coherence between interfaces. We find an isotropic-nematic phase transition, but it is
always precluded by an isotropic-lamellar phase transition occurring at higher temperature. We show
that the lamellar phase is stable to dislocation-mediated melting to a nematic phase in the limit of long
copolymer chains, even though the isotropic-lamellar phase transition becomes second order in this lim-

it.

PACS number(s): 64.60.—1i, 64.70.Md, 61.25.Hq

I. INTRODUCTION

The self-assembly of molecules into layers, and then
into various ordered phases including lamellar or smectic
phases, is well established in systems including diblock
copolymers [1] and surfactant systems with vanishing
spontaneous curvature [2]. In each case, interfaces arise
spontaneously from repulsive interactions between
different parts of a molecule more or less mixed in the
isotropic phase, and microscopically separated in the or-
dered phases.

In these interface-forming systems, the possibility has
been suggested theoretically [3], but never observed ex-
perimentally, that a self-assembled nematic phase might
exist. In such a phase, orientational symmetry would be
broken by selection of a layer normal direction, but
translational symmetry would remain. That is, the layers
would lack quasi-long-range order with regard to their
vertical displacement from some reference plane.

A nematic phase may also be described in terms of the
melting of an ordered smectic phase by the proliferation
of dislocation lines. Detailed theory of the smectic-
nematic transition [4] is in agreement with the basic cri-
terion of Helfrich [5], in which dislocations appear when
their free energy per unit persistence length becomes of
order ki T. Then the configurational entropy of the dislo-
cation line is comparable to the free energy of the elastic
distortion caused by the dislocation.

Besides the logical possibility of the existence of the
nematic phase, we may describe the plausibility of a
nematic phase as a different compromise between the
elastic energy of the interfaces in a microphase-separated
system and the configurational entropy; breaking rota-
tional symmetry, by choosing a common direction in
which the layer normals tend to point, reduces, e.g., the
bending energy of the interfaces, while maintaining at

|

least some configurational entropy. From the low-
temperature point of view, a nematic phase is plausible if
the elastic constants describing the ordered phase are
weak, so that the strain energy per unit persistence length
of dislocations is small compared to k5 T [S].

We shall show, however, that for systems undergoing
microphase separation described by the Brazovskii mod-
el, the isotropic-nematic (IN) transition exists but is al-
ways preempted by the isotropic-smectic (IS) transition.
Thus, no nematic phase can appear in symmetric diblock
copolymer melts of sufficiently long chains, where the
Brazovskii model has been shown to be well controlled
[6]. The sponge-lamellar transition in self-assembling
surfactant systems has been described in terms of a Bra-
zovskii model as well [7]; if this description is appropri-
ate, no nematic phases are expected in surfactant-bilayer
systems.

In Sec. V of this paper, we examine the Helfrich cri-
terion for dislocation-mediated melting of copolymer
lamellar phases. We find that even though the IS transi-
tion becomes second order in the limit of long chain
length (N — o), and thus the smectic elastic constants
vanish, the persistence length of the dislocation lines
diverges like the layer spacing; as a result, the strain ener-
gy per persistence length of a dislocation diverges in the
limit of long chains. Consistent with this, we show that
the effect of Landau-Peierls fluctuations on the higher-
order Bragg peaks in the ordered state becomes weak in
the limit of long chains, so that the order just below the
transition becomes stronger as N — co.

II. BRAZOVSKII MODEL

To describe the spontaneous microphase separation of
a scalar order parameter, we consider a model Hamiltoni-
an

1
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where we have adopted the shorthand [ = [d*q/2m)?
and {g;} ={q1, 92, 93, —4¢1—4q,—43}. Thisis a generali-
zation of the model introduced by Brazovskii [8], in
which A({g;}) is replaced by a constant A. In an 4-B di-
block copolymer melt, the scalar order parameter ¥(x)
represents the local monomer concentration,

Y(x)=p,(x)—f,

where p 4(x) is the local volume fraction of monomer A4
and f is its average value. In surfactant systems
represents the volume fraction of solvent “inside” versus
“outside” the bilayer. The conjugate field 4 (x) is includ-
ed to facilitate discussion of states with nonzero {(x)).
The effective Hamiltonian of Eq. (1) has been justified by
systematic calculation using the random-phase approxi-
mation in the case of block copolymers [6], and shown to
be quantitative in describing the microphase separation
transition in experiment [1].

The quadratic term in Eq. (1) describes the selection of
a wave number g, for condensation of the order parame-
ter, without preference as to the condensation direction; 7
is the reduced temperature (T—TMF)/TMF in mean
field. Only even terms is ¢ are permitted by symmetry
(i.e., we consider symmetric diblock copolymers, and in
the surfactant systems we may interchange the definitions
of the ““inside” and “outside” volumes [7]). The quartic
term provides a stabilizing nonlinearity.

The ordering transition in the Brazovskii model cannot
be a second-order continuous transition, because under
this assumption the fluctuations in the order parameter
itself diverge as the hypothetical transition temperature
7=0 is approached:

2
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The assumption of independent Gaussian fluctuations of
the condensing order parameter in the entire spherical
shell of directions of condensation leads to the diver-
gence; therefore, the stabilizing quartic terms is essential
to describe the transition. Or, we may say that the com-
petition between fluctuations with wave vectors in
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different direction is crucial.

Brazovskii showed that a self-consistent treatment of
the leading divergences as the mean-field critical temper-
ature is approached (7—0) leads to a fluctuation-driven
first-order phase transition at a suppressed temperature.
We shall cast his approximation in a particularly trans-
parent form, useful when we consider more complicated
symmetry breaking. The treatment of Ref. [8] turns out
to be equivalent to the use of the Feynman-Hellman
theorem [9] which provides an upper bound on the free
energy of a system in terms of an approximate partition
function:

F<F, =(H),—TS, (3)
with an entropy S, defined by
Fo=—1n | [ Dyexp(—Hq[])

=(H,)y— TS, . 4)

Here ( ), represents averages in the ensemble with
Boltzmann weights given by exp(—H,), and H should
be chosen, within some variational class, so as to mini-
mize F,.. To discuss the free energy as a function of the
mean value of the order parameter {1(q)), rather than of
the conjugate field 4(q), we introduce a corresponding
Gibbs free energy

D({Y))=F,, [h]+ fqh(—q)<¢(q)> .

The variational form for the effective Hamiltonian we
take is a general quadratic form,

Ho=%fq[r<q>+(q-qo>2}|¢<q>~zz<q>|2 , (5)

in which r(g) and ¥(q)=(1(q)), are introduced as pa-
rameters. The corresponding fluctuations of the order
parameter are described by a correlation function

G(q)={8¢%(q)¢(—q)),
=[r(@)+(g—qo)1"", (6)
where 89(q)=1(q)—1(q). With this form, we obtain

P)=1 [ [7Ha =g’ NG @+ HQF —1+5 [ [, Ma1,=41,02, = 0:)[G(g)+27(q 1P —41)]G (g5)
+5 [, 1, [, M1a)Pa)Bar 88 —g,— 9, —~43)= TS, , @

where
—TS,=—1 [ nG(9)—(Hy), (8)
q

and where ( H, ),=const.

We may compute a bound on the free energy by
minimizing I" with respect to r(g) and the mean order
parameter ¥(q). Minimizing with respect to r(q) leads to

f

a self-consistent equation for the inverse correlation func-
tion,

rg=r+1f Mg, —g.91,—a)
X[Glg)+¥lg )P —q,)] . ©

Differentiation of I" with respect to #(g) leads to an ap-
proximation equation of state,
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mo=rig)+1 [ Ma,=4,41, =916 0D+ [, [ M=0.91.929 =01 =a200(a)¥la)Fg—q1=q2) . (10

Equations (9) and (10) may be interpreted as a self-
consistent approximation for the correlation function and
equation of state, corresponding to a certain infinite sum
of perturbative diagrams. This is the class of diagrams
shown by Brazovskii to be most divergent in the limit of
small r. The equations given here reduce precisely to
Brazovskii’s equations when A({gq,}) is approximated by
a g-independent constant A. To evaluate I" as a function
of the order parameter, Brazovskii effectively reintegrat-
ed the equation of state (10). The advantage of the varia-
tional formulation presented here is that it allows a direct
evaluation of the variational free energy, a feature that
becomes particularly useful when considering states of
more complicated structure.

For the case of smectic (i.e., lamellar) order, relevant to
symmetric diblocks, we set

Wg)=a[8(qg+qy,)+8(g—gy)],
h(g)=h[6(g+qy)+8(g—q,)] .

(11)

Note that in this case A({g;}) appears in Egs. (9) and (10)
only with arguments of the form A(q;,—q,9,, —q,)
Note also that the important fluctuations in this model
are all at wave vectors of magnitude g ~g,, allowing us
to retain only the angular dependence of A({g;}) and
r(g). We will thus approximate g with g, when it ap-
pears outside of the propagator G(gq), and approximate
Mgy, —4q1,92, —q2)—>AG,-q,) and r(g)—r(q) as func-
tions of the unit vectors g, and g,.

III. NEMATIC ORDER PARAMETER

To extend the model of Ref. [8] to describe nematic
symmetry breaking, we introduce the following compos-
ite operator as the nematic order parameter:

The expectation value of this operator samples the anisot-
ropy of the distribution of fluctuation wave vectors, or of
the gradients of the original scalar order parameter.
These gradients define the normal direction of interfaces
arising in the fluctuations of the isotropic state. Hence
Eq. (11) is a natural choice to study orientational symme-
try breaking.

We are interested in symmetry breaking with this order
parameter at long wavelength, so we concentrate on the
uniform component of Q;;. We can, without loss of gen-
erality, focus on the appearance of uniaxial order aligned
along the Z axis, which we describe with a related scalar
order parameter

0= [ Y@ —q), (13)
q

where Y,,(q) is the / =2, m =0 spherical harmonic. The
order parameter ¥(q) has significant fluctuations only for
wave vectors of magnitude |g| =, so that g3Q <Q,,. In

-

order to study fluctuations and possible ordering of Q, we
introduce a field 7, conjugate to 1Q, so that
H—H —17,Q. The field 7, has the interpretation of an
anisotropic mean-field susceptibility; it favors the conden-
sation of ¥ in a particular direction.

We may now proceed in several ways. To begin with,
we can identify a self-consistent equation that sums the
set of most-divergent programs for quantities such as the
susceptibility to the anisotropic field 7,. This susceptibili-
ty, equivalent to the correlation function for nematic fluc-
tuations, is defined by

d*F

=0 . 14
149 67'267'2 7,=0 14

A divergence is this susceptibility determines the nematic
spinodal, the limit of stability of the isotropic phase to
nematic fluctuations. Formal summation of the set of di-
agrams shown in Fig. 1 gives a Dyson equation

II

= 5
Seo 1+2,0T 7 (13

where

2
90
— 22 ~—
n—%fqiyzo(an CRCIE (16)
is the one-loop nematic susceptibility and A, is the [ =2

component of A(§,,9,), defined via the decomposition

—qz)zz Yltn(al)Ylm(a2)}\'l . (17)

I,m

M‘h, —41,9>,

Only even values of / contribute to the sum in Eq. (17),
since A must be even under g, —g¢,. In what follows, we
will retain only the / =0 and / =2 components of A, giv-
ing an explicit form 47A(g,-9,)=Ao+ 3[3(4,-§,)*—1]A,.

We retain the wave-vector dependence of A because it
is evident from Eq. (15) that if A is independent of {g;},
then Sy, is unrenormalized by the quartic interactions.
It is also evident that a divergence of Sp, can occur only
when A, is negative. A negative value of A, results in a
smaller quartic interaction for fluctuations with parallel
wave vectors than for perpendicular wave vectors, which
naturally favors nematic alignment. Note that the quar-
tic coupling resulting from the calculations of Ref. [6] is
indeed anisotropic; in the copolymer system the interac-
tion is obviously nonlocal, since the polymer chains are
extended objects. There is a limit to how anisotropic the
quartic coupling can be, since the theory must be stabi-
lized by the quartic coupling at high temperatures; for a

= “Or+-O0-+ OO0+

FIG. 1. Class of diagrams contributing to the nematic sus-
ceptibility Spp.



1122

single large-amplitude fluctuation to be stable we require
that Ay+5A,>0. The basic mechanism in the Brazovskii
calculation for shifting the transition temperature and al-
tering the shape of the effective potential is contained in
the “feedback” from the correction to the reduced tem-
perature arising from the quartic nonlinearity, expressed
in Eq. (9). The analogous mechanism for the nematic
fluctuations is expressed in Eq. (15).

It is now straightforward to estimate the importance of
nematic and smectic fluctuations in the isotropic state by
calculating two Ginzburg criteria [10]—one for smectic
fluctuations arising from Eq. (7) and one for nematic fluc-
tuations arising from Eq. (15). These criteria estimate the
temperature at which the first perturbative correction is
of the same order as the bare susceptibility. For the
lamellar susceptibility of Eq. (7), this is

Ao quo<q>~r, T~(Aog3)¥?, (18)

where Gy(q)=[7+(g —q,)*]" ! is the mean-field correla-
tion function. For the nematic susceptibility of Eq. (15),
the corresponding Ginzburg criterion is

?»zfq Y20@) PGl @) ~1, 7~(Aq3)"3. (19)

We find that the two Ginzburg temperatures are of the
same order for an anisotropy of the quartic term of rela-
tive order unity. A more detailed calculation is required
to determine whether the smectic phase is ever preempt-
ed by a transition to a nematic phase.

IV. STABILITY OF THE ISOTROPIC PHASE

We expect, based on standard symmetry arguments
[11], that an IN transition should be first order, and
should occur at a temperature above the stability thresh-
old given in Eq. (15). Rather than attempting to discover
the set of diagrams for the free energy, we may employ
the variational approach of Sec. II. A variational descrip-
tion of a nematic phase is obtained by setting ( —q)=0
but letting r(g) be anisotropic. We shall compute the
variational free energy for a nematic phase in an approxi-
mation analogous to the original Brazovskii approxima-
tion, but in the presence of an external field 7,. By ex-
panding this energy in powers of 7,, we can recover the
susceptibility of Eq. (15).

It is useful first to decompose the angular dependence
of r and 7 in spherical harmonics,

n=[d%qYh@r@,

(20a)
n=[d%q Y@@,
and similarly to decompose the ‘“bubble” integral,
defining
a= [ ¥i@)G(g)
q
2 Y*( )
~ 90 g2 Y0 (20b)
8 Vr@)

In the above equations, f dZ@ refers to an integral over
the unit sphere, and / is always assumed to be even. Note
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that, in this notation, g, ={(8%*(x)) /V'47 and g, = Q.

Self-consistent equations (9) and (10) for a state with
both lamellar order and anisotropic fluctuations can then
be written

’1:7'1“*’%7\1&“‘7\1)’1“2 ,

2n
h=3 (rya—irpia’),
I
where y; =Y,(Z). Similarly, the variational free energy
of Eq. (7) can be written

r=3 (ir,—r)g +irgl)
1
+3 {ritiayg +Hiapta®}a® =TS, , (22
1
where
a3 —
—TS0=8—0—2-fd@\/r(@)+const . (23)
T

While these equations are valid for an arbitrary interac-
tion A, in practice we will consider an interaction in
which A;=0 for />2. By use of Eq. (21), this also gives
an r(g@) with only / =0 and / =2 components, and allows
the angular integrals of Egs. (20) and (23) to be evaluated
analytically.

To describe a smectic phase we can fix @ and use Eq.
(21) to determine 7, (or, equivalently, g,), giving a smectic
free energy I'g(a). Note that, for a g-dependent quartic
interaction, the presence of lamellar order generally in-
duces some anisotropic fluctuations, or nematic order.
To describe a pure nematic phase, we set a =0, set
g,=¢, and use Eq. (21) to determine g, giving a nematic
free energy 'y (Q).

We have calculated the transition temperatures 7g and
7y for the IS and IN transitions as a function of the ratio
A,/Aq describing the anisotropy of the quartic coupling
(see Fig. 2). We have considered only negative values of
A,, since these favor nematic order. We find that al-
though there is indeed a first-order transition to the
nematic phase for A, <O, it is precluded by the smectic
phase transition for all A,+5A,>0, corresponding to
Hamiltonians that are stable at high temperatures. Since
both transition temperatures are depressed by the same
order in A (or in 1/N) below the mean-field transition, we
know of no way of arriving at this conclusion without ex-
plicit calculation. We note that the strongly anisotropic
quartic coupling that favors nematic order also favors the
smectic ordering, and raises the temperature 7 as well as
TN-

Suppose we attempt to favor nematic phases with an
explicit microscopic Maier-Saupe or Onsager-like nemat-
ic coupling [12-14] between the individual bonds in the
case of diblock copolymers. This modification of the
theory is ineffective in producing a nematic phase, for the
following reason: The smectic ordering in diblock copo-
lymers initially has a wavelength of the order of the ra-
dius of gyration of the polymers. The fractional deforma-
tion of the radius of gyration at temperatures near the
transition is thus of order unity, while the corresponding
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FIG. 2. Transition temperatures 7. for the isotropic-smectic
(0) and isotropic-nematic (A) transitions plotted vs the ratio
—A,/Aq describing the anisotropy of the quartic interaction.
The 7, are measured in units of (Agg3)~2"%.

induced bond orientational order is extremely weak, of
order 1/N. Thus there is very little opportunity for
“feedback” between concentration fluctuations driven by
the incompatibility of the monomers, and nematic order-
ing driven by the microscopic nematic coupling, until the
molecules are very stiff or very short (N —1).

V. STABILITY OF THE SMECTIC PHASE

A complementary way to describe and search for a
nematic phase is to consider the melting of the ordered
smectic phase by the proliferation of wandering disloca-
tions [15,5,4]. Small dislocation loops have a finite core
and far-field strain free energy, and are present in thermal
equilibrium in some concentration at all temperatures.
These pointlike defects do not destroy the quasi-long-
range order in smectics. A finite density of ‘“‘unbound”
dislocation lines, in contrast, destroys the quasi-long-
range order on length scales large compared to the dis-
tance between such lines [4].

A simple criterion for melting by the growth of dislo-
cation loops from small pointlike defects to wandering
unbound dislocation lines was given by Helfrich [S]. The
configurational entropy of the wandering dislocation line
is of order kyT per persistence length /, (the scale on
which the tangent to the dislocation is decorrelated).
When this entropy per unit length is of the same magni-
tude as the sum of the core and far-field strain free ener-
gies per unit length, the dislocation line begins to be
favorable.

Because the microphase-separation transition becomes
second order in the limit of N — o for diblock copoly-
mers [16], the elastic constants B and K of the ordered
smectic phase just below the transition T=7, must be-
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come indefinitely small. One might expect in this limit
that the strain energies associated with a dislocation
would become arbitrarily small, and so the Helfrich cri-
terion for dislocation-mediated melting to a nematic
phase would be satisfied. (Of course, if we found, using a
low-temperature argument, that the smectic phase was
unstable to melting to a nematic phase at T=T,, this
would contradict our high-temperature calculation.)

We shall not pursue a mapping of the copolymer sys-
tem onto the detailed calculations of Ref. [4], as this
would require a calculation of quantities such as the core
energy for dislocations, etc. Instead, we employ a simple
calculation [15] of the far-field strain energy of an edge
dislocation, in terms of the harmonic elastic free-energy
density of smectic phases:

F=1B,u)’+K(Vu)]. (24)

The contribution to the strain energy per unit length
from regions farther than a layer spacing d from the
dislocation core is

e~Kul/(&a) . (25)

Here u, is the magnitude of the Burger vector of the
dislocation (e.g., a layer spacing), a is the in-plane dimen-
sions of the core (assumed to be of order u,), and £ is the
smectic penetration length £=(K /B)!/2. The missing
coefficient in Eq. (25) depend on the separation of the
strain free energy into core and far-field portions.

We require the long-wavelength smectic elastic
coefficients K and B for the copolymer system just below
the smectic transition. We find these by extending the
calculation of the condensation free-energy change—
which is, by definition, zero at the first-order
transition—to condensation into a slightly distorted
state. In contrast to the preceding section, we shall com-
pute these coefficients with no anisotropy of the quartic
coupling.

The distortion appropriate to determine B can be in-
duced by condensation at a slightly unfavorable wave

number, i.e., |gl=go+g, with ¢,<<q,. The corre-
sponding change in the layer spacing is
8d/d=—08q/qy=—q,/qy, which implies a layer-

displacement field given by d,u = —gq, /q,. We calculate
the amplitude of ordering and the free energy of the or-
dered state to order O(g2).

At T=T,, the free energies of the disordered and
undistorted ordered states are equal. The disordered
state has zero free energy by definition, so the slightly
positive free energy of the distorted ordered state is the
elastic free energy. (This distorted state is only metasta-
ble at T=T, since it is of higher free energy than the
disordered state.) Hence, the positive condensation free-
energy density at =7, for such a distortion is related
to the smectic modulus by

8T'=1B(d,u)*=1B(q,/q,)* . (26)
Similarly, to determine the bending elasticity K, we con-

dense with a small-amplitude ripple in the layer positions,
i.e., a concentration profile of the form
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P(x,z)=2a cos[qy(z +2uycosq,x)], q,<<qq , (27

In this case, we calculate the amplitude of ordering and
the free energy of the ordered state to order @(q?}). The
transverse ripple in the layer displacement
u(x)=2uycosq,x implies an elastic energy density (aver-
aged over a period) equal to the free-energy density of the
rippled ordered state. Hence

ST=1K(Viu)=Kqluj . (28)

Rotational invariance [11] determines the form of the
smectic elastic free energy, Eq. (24), and of the condensa-
tion free-energy densities, Eqgs. (26) and (28), which arise
naturally from our calculation.

We find after a calculation of free-energy differences
analogous to those presented in Sec. II that the smectic
elastic constants B and K at =T, , just inside the or-
dered smectic phase, are given by

K=r/\, B=4q3r /X . (29)

Note that the penetration length £=(2¢,)"! is of the
same order as the layer spacing from Eq. (29).

We assume that the persistence length of the disloca-
tion line is of the order of the layer spacing, which is
comparable to the penetration length. This is the only
small length scale in the problem, and it is hard to imag-
ine the persistence length being shorter than this. Hence
the dislocation-line strain free energy per persistence
length /, is roughly

el,~K /qo~(gqo/M)'" . (30)

The smectic phase is thus stable whenever A <<gq,. We
note, furthermore, that Brazovskii’s approximation for
the free energy is accurate [8] only when A/q, <<1, i.e.,
when the transition is only weakly first order. The lamel-
lar phase thus remains stable at temperatures up to the IS
transition temperature in any system whose IS transition
is well described by the Brazovskii approximation.

To describe the lamellar phase of diblock copolymers,
we use the prescription given in Ref. [16] for mapping the
Leibler free energy onto the Brazovskii Hamiltonian.
Rescaling the concentration field by c¢2ay?/v=47,
where ¢?=1.214 for symmetric copolymers, leads to pa-
rameter 7=2(x, —x)/(c%a?), A=156.56v/(Nc*a*), and
gq2=22.71/(Na?), where the spinodal value of y is
X, —10.495/N. Using these values, we obtain smectic
constants B=30.15a°/v’N"*? and K =0.332a2/
vN 173 where N=Na%/v*. The elastic constants indeed
vanish as N — oo, as they must when the transition be-
comes second order. The dislocation-line energy per per-
sistence length, nonetheless, diverges as

el,~N'° 31)
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in the limit of long chains, due to the divergence of /,.
As a result, the smectic order becomes better and better
defined with increasing N.

Another way to ask about the degree of disorder in the
smectic phase is to compute the Caille exponent [17]
governing the power-law tails around each quasi-Bragg
peak. These tails in the scattering are the result of
Landau-Peierls fluctuations [18,19], or undulation modes
[11], which are transverse fluctuations of the layer posi-
tions. Near the Bragg condition the structure factor
varies as [17]

S(q,, q,=0)~\q,—2wm sd|"™ *. (32)

The Caille exponent 7, of the mth-order Bragg peak is
given by

N =m2Tqk /[8m(KB)'?]~m2qy\/r . (33)

The exponent 77,, eventually becomes greater than 2 for
m large enough, and the quasi-Bragg divergence becomes
a cusp.

Observe that the coefficient of m? in the Caille ex-
ponent is precisely the inverse of the characteristic ratio
in Eq. (31) describing unbinding of dislocations. Hence
as N — oo, the Bragg peaks at progressively higher order
survive undulation fluctuations. Again, the copolymer
smectic phase becomes better ordered in the limit N —
even though the transition becomes second order in this
limit.

VI. CONCLUSIONS

We have used two complementary methods to examine
the possibility of nematic, rather than smectic, order in
systems described by the Brazovskii model. We first con-
structed a generalization of Brazovskii’s treatment of the
IS transition in order to examine the stability of the iso-
tropic phase to the formation of the nematic order. We
find that, for anisotropic quartic interactions, the isotro-
pic phase can become unstable to a nematic phase, but
only at temperatures below the IS transition temperature.
For strongly anisotropic interactions, however, both tran-
sition temperatures are of the same order in A below the
mean-field transition, necessitating a quantitative
analysis. We then examined the stability of the low-
temperature smectic phase with respect to dislocation-
mediated melting into a nematic phase treating only the
case of an isotropic interaction. We find that the stability
of the smectic phase of diblock copolymers at tempera-
tures just below the IS transition increases with N. More
generally, we find that the smectic phase of the Bra-
zovskii model is stable over the entire range of parame-
ters in which Brazovskii’s Hartree approximation is val-
id, and that it becomes increasingly stable as the transi-
tion becomes more weakly first order.
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